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Finite lifetime of turbulence in shear flows

Bjorn Hof'?, Jerry Westerweel?, Tobias M. Schneider’ & Bruno Eckhardt’
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Figure 1 | Sketch of the experimental apparatus. The pipe sections we
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Figure 2 | Lifetime distributions.
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numbers. For this we usd axially periodic pipes of length L |and
diameter D, where L is both large and is varied as part of the study.

The computational protocol is of the| reverse transition type
(12, 23-26) where we always first obtain a fully turbulent tlow
throughout the pipe at Re ~ 3, 000 and then decrease Re. Unlike

> 773, travelling wave appears
> 1650, new puff appears

> 1750, existing puff does not decay
< 2300, puffs are localized

> 2600, continuous turbulence, no puff/slug



Unresolved issue A

What is the perturbation growth rate in a
laminar pipe flow ?

undergraduate and graduate text books
often silent on pipe transition



Unresolved iIssue B

How does laminar pipe flow breakdown?
Any connection with boundary layer?

may not have unigque answer



Unresolved issue C

How does skin friction vary with axial
distance in pipe transition ?

relevant to oil transport
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Progress-variable approach for large-eddy
simulation of non-premixed
turbulent combustion
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flame

Chuck’s Codes:

(1) Periodic pipe code, used in Wu & Moin, JFM (2008)
(2) Boundary layer code, used in Wu & Moin, JFM (2009), PoF (2010)
(3) Jet code, used in the present study



Step 1 towards spatial pipe DNS _B

exact parabolic

Fig. 3.

DNS of spatial laminar pipe flow
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Fig. 4.

Step 2 towards spatial pipe DNS :—b
Many failed transition tests at Re_D = 5300

___exact parabolic

| perturbation




Step 3: DNS results at Re_D = 8000

Spatial DNS over 250R domain on 8196 x 200 x 256 mesh

0 50 100 z 150 200 250

R+ = 258.48, Dz+ = 7.9 (after transition)

Periodic DNS over 30R domain on 2048 x 256 x 512 mesh

R+ =258.48, Dz+ =3.8



exact perturbation

z =0 (inlet) z=20R z = 30R

z = 40R = 220R streamwise periodicity



Contours of u at a random instant over the § = 0° and 180° planes
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0 < 2 < 250R (full range)

210R < 2 < 240R

additional pipe flow DNS with streamwise periodicity,
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Solid present DNS sampled in time and averaged in the region of 210R < z < 240R

dotted additional 30R-long pipe flow DNS with streamwise periodicity
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for pipe flow, f(re) can not be

PIPE g T translated into f(axial distance)
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Fig. 21.2. Resistance formula for smooth flat plate at zero incidence; comparison between
theory and measurement
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Iso-surfaces of swirling strength A.; coloured by local values of u,

continuous transition without spots
between 30R< z < 45R
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Partial answer to issue A (growth rate)

Weak, localized, finite perturbations may
grow exponentially in a laminar pipe flow



Partial answer to issue B (breakdown)

For the particular type of disturbance

breakdown involves vortex filament,
reverse horseshoe, and hairpin packet

transition almost continuous in space,
no turbulent spot



Partial answer to issue C (friction)

For the particular type of disturbance

skin friction overshoots Moody’s
correlation during pipe transition



New guestions
Repeatability, only one case

Effect of Re on the observations

Any travelling wave



Step 4: Reducing Re D to 6000
(does not transition at 5700)

Spatial DNS over 250R domain on 8196 x 200 x 256 mesh
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R+ =201.6, Dz+ = 6.1 (after transition)

Periodic DNS over 30R domain on 2048 x 256 x 512 mesh
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exact perturbation
p i : :

arabolic
2 =0 2 = 20R = 30R

streamwise periodicity
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851

breakdown at lower Re D = 6000

hairpin packet

reversed horseshoe



inlet

vortex filament

Continuous transition &5
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Improved answer to iIssue A (growth rate)

Confirmed that

weak, localized, finite perturbations can
grow exponentially in a laminar pipe flow



Improved answer to iIssue B (obreakdown)

confirmed that
for the particular type of disturbance

breakdown involves vortex filament,
reverse horseshoe, and hairpin packet

transition almost continuous In space,
no turbulent spot

unclear if vortex filament is traveling wave



Improved answer to issue C (riction)

Confirmed that

for the particular type of disturbance

skin friction overshoots Moody’s
correlation during pipe transition



More new questions

Effect of inlet disturbance on results

Why no spots as in boundary layer
Why reversed horseshoe vortex
Add “numerical” dye as in Reynolds




Step 5: Modify inlet disturbance at Re_D = 8000

8196 x 200 x 256 mesh, 16384 x 200 x 512 mesh

old

0.4<r<0.42 0.9<r<0.915

If inlet disturbance 0.9<r<0.92, transitions right away
If inlet disturbance 0.9<r<0.91, no transition



Step 5: Modify inlet disturbance at Re_D = 8000

Also, added passive scalar as dye in the Reynolds’ experiment

scalar =0

Fig. 4.




| |
0 50 100 150 200 250

60 70 80 90 100 110




dye brought into laminar pipe, as in Osborne Reynolds (1883), exhibiting dimples




hairpin packet plunges into silky dye, causing dimples



Simultaneous forward and backward hairpin packets in Taminar pipe



Iso-surfaces of swirling strength A.; coloured by local values of u,

discrete pipe transition with spots
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