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Motivation

@ Magnetic field-induced instabilities can transport angular momentum
in astrophysical accretion disks outwards, thereby permitting accretion

e Magnetorotational instability has several appealing properties (Balbus
and Hawley 1991, 1998)

>
>
>
>

>
>

It is a linear instability

It is triggered by weak poloidal magnetic field

It is axisymmetric

It occurs in Rayleigh-stable regime when the angular velocity decreases
radially

It grows on a dynamical timescale

It is fundamentally a local instability

o Efficiency of angular momentum transport depends on the saturation
of the MRI

@ Central question: how does the MRI saturate?
This is a nonlinear problem!

@ |s the saturated state perhaps a dynamo? Lesur and Ogilvie (2008)
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|deal MRI

The basic equations are

Ou 1 1
— +(u-Vu| =-Vp——VB2+ —(B-V)B,
p{at ( )] P 2u0 uo( )
0B
E—F(U-V)B:(B-V)u,

V-u=V-B=0.

These equations have a basic axisymmetric solution of the form
ug = [0, V(r), 0], Bo = [0, By(r), B:(r)]

in (r, ¢, z) coordinates.
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Numerical simulations: shearing box geometry

o Balbus-Hawley 1991a,b: Thin sheets of matter moving radially
inwards and outwards

@ X-points suggest reconnection process important to saturation

@ Goodman & Xu 1994, Pessah & Goodman 2009: shear instabilities of
the interpenetrating sheets

@ Sano et al 1998: whether saturation occurs depends on the Elsasser
number A = v3/nQ
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Formulation of a Model Problem: Knobloch & Julien 2005

A

Shearing box approximation at r* with local angular velocity Q*(r*)z:
Straight channel: —L*/2 < x* < [*/2, —o0 < y* < o0,
—0 < ZF <00

o Linear shear: Up* = (0,0*x*,0)
o Constant B-Field: Bo™ = (0, By, B;,)

tor»

e Perturb: u = (u,v,w) = (=2, v,9¥x), b= (a,b,c) = (—¢z, b, dx)

Axisymmetric Equations

Ve +2Qv, + J(¥, V) = vaV2¢, + vad(o, V2¢) + vV, (1)
vi — (2Q + o), + J(, v) = vab, + vad(¢, b) + vV?3v, (2)

¢ + (1, ) = ¥z + V39, (3)

be + J(b, b) = v, — ¢, + J(¢, v) + Vb, (4)

where J(f, g) = fg; — 28«

va = B;o,/\/,uop* U*, Q, v, n are the dimensionless Alfvén speed,
rotation rate, kinematic viscosity and ohmic diffusivity
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Linear Theory

@ Linearization about the trivial state y = v =¢ =b=0:
e Perturbation exp[\t + ikx + inz], p = k? + n? = dispersion relation

pl(A+vp)(A+np)+van’ 2 +2Qm [(A+np)?(22+0) +ovzn®] = 0. (5)

@ Conventional view of MRI: positive growth rate A achieved for
sufficiently large vertical wavenumbers n whenever o < 0, v4 # 0,
provided only that v and 7 are sufficiently small

» Forv=n=0

vanlo
N=__A O(van*). 6
SAn 7 1 O(v4n") (6)
» For A = 0 threshold for instability exists. For small v, 7 critical Elsasser
number Q )
2Q+0\p
A= v/ = -1 57 ) % + 0 )

» Reconnection effects described by finite 77 are more important for
stabilizing the system against the MRI than viscosity.
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Scaling Assumptions

@ Traditional approach to nonlinear saturation: weakly nonlinear theory
with (A —Ac)/Ac < 1 (eg. Umurhan & Regev 2007)
@ Our approach: strongly nonlinear theory

» shear is the dominant source of energy for the MRI

» MRI itself requires the presence of a (weaker) vertical magnetic field

» dissipative effects are weaker still but cannot be ignored since they are
ultimately responsible for the saturation of the instability

@ Hence scaling:
» rapid rotation, strong shear: (Q,0) = ¢ (€, 4)

magnetic field: va =1ie. , U" = v = B}, /\/iop*
» weak dissipative processes: (v,n) = €(?,7)
» thin fingers, strong growth: 9y — 0y, 0, — € 10,, 0 — ¢ 10,

v

@ In the following we take € < 1, or equivalently
Rm > S > max(1, Pm), while A = O(1). Here
Rm = |o*|L*?/n* = O(e™2), Pm = v*/n* = O(1),
S = viL*/n* = O(e™!) are the magnetic Reynolds, magnetic Prandtl
and Lundquist numbers.
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Scaled Equations
@ In parallel with the above assumptions we need to make further
assumptions about the relative magnitude of the various fields:
e we find (1, ) — €(2p, @), (v, b) — ¢ (v, b) leads to a self-consistent
set of reduced pdes
@ scaled pdes:

EDEt (8)2( + 6_282) U+ 26_3QVZ = vﬁ (8)% + 6_28§) b, + (8)

V3 (¢, (0% + € 202) ¢) + 20 (02 + € 202)°

gy = @A) = b+ 0, b) + 002+ )y
(9)
D
€pp® = Yz + (D% + e ?0)0 (10)
1Dy € 2v, — e Y6¢, + e (¢, v) + (0% + € 20%)b, (11)

Dt
where D/Dt = 0y + J[1), o).
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Derivation of Reduced PDEs

@ To solve the scaled equations we suppose
W(x,z,t) = Yo(x, z, t) + e1(x,z,t) + ..., etc.
°

vo = V(x), by = B(x). (12)

@ From Egs for azimuthal fields v, b at O(e~!) and poloidal fields 9, ¢ at
0(e72), 0(1)

13
14

Pozzt + 2Qvi; = V3ozzz + Pozzzz (13)

vie — (22 + 6 + V'(x))to, = v3brr — V3B (x)do; + Dviz (14)
Pot = oz + NPozz (15)

b1y — B'(x)to, = vi; — (G + V'(x))¢oz + Nb12z (16)

@ Closure requires determination of V’(x), B'(x).
» Averaging Eqs for azimuthal fields v, b at O(1) in z, t and integrating
gives
UV'(x) = thoviz — vadobi; + Gt (17)
nB'(x) = tob1z — poviz + G (18)
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Nonlinear Dispersion Relation

@ For each wavenumber n the dispersion relation determines V'

2Q[(vZ + PPr?)V' + (2Q + 8)iPn® + 6v3] + n?(v3 + Pin?)2 = 0

Parameters: Q =1,vy = 1,0 = n=1,and 6 = —1.5,—1,—0.5 (solid, dashed, dashed-dot).
The decrease in n with increasing V' indicates coarsening as the MRI saturates.
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Single-Mode Solutions: Closure

@ Closure requires the determination of V. B” as a function of W. Since

1 ) 1 i
U= 5 (U0 M tee), m= (V0 M ree), (19
1 . 1 i
%o = E(I(X) e 4 cc), b= 5(l’:)’(x) e 1 c.c),
we find C1 — LB|v)? NG
V/ — é’ B/ = —, 20
M) =5 Tap W= Tp )
7/)‘/3\ + 7/7\3,72 (2§ + 3)ﬁ3n2 + v%(a'\l//\ — 2§ﬁ)
= ST oA - m2(v2 + onn? - @)
n?(va + vnn?) 1%(va + vin?)

@ MRI requires C; = 0 for nonzero V' and ¥
@ Nonlinear dispersion relation then gives the saturated value of |V|:

2072 [n2(v3\ + Diin2)2 + 2052 + 2Q(2Q + a)ﬁ2n2]

w2 = — (22)

[4?22 van + n? (vi +onn?) (vvi + 773n2)]

This bifurcation equation determines the saturation amplitude
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Approach to Saturated State

1w
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@ Time-dependent evolution of an x-invariant single-mode perturbation
indicates approach to predicted stationary solution

@ Above results display extreme cases: disks supported entirely by
mechanical (B’ = 0) or magnetic (B" # 0) pressure

o vy = 2me|W| ~ O(e): turbulent viscosity associated with developed
MRI
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Small radial scales
If we suppose that

(Vv 77) = G(Da 7/7\)7 (Q’U) = 671(5\278)’ (nv >‘) = 571(ﬁ7 X)7 (23)

where € < 1, § < 1 with € = 0(9) we obtain

V20 + 20w, = VAV, (24)

vie — (2Q + G + V/(x))hoz = vabi, — VaB'(x)doz (25)
Pot = thoz (26)

bie — B'(x)t0z = viz — (6 + V'(x)) oz (27)
DV'(x) = ovi, — Vadobi, (28)

1B'(x) = Yob1z — doviz (29)

In these equations ¥ = (9%, 0, d;), where X = x/§ is a fast scale. Hence
full spatial dependence is retained but dissipation is subdominant.
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Single channel mode

With OxVo = Oxbo = 0 the reduced equations admit exponentially
growing solutions of the form (Goodman and Xu, 1994)

o = Wo(t)cosnz, vi = Vy(t)sinnz, (30)
¢o = Po(t)sinnz, by = By(t)cosnz,

However, within the theory an initial state with n = Nj,ax and
Ox Vo = Ox by = 0 develops nonzero Ox Vg, Ox b, resulting in a transition
from exponential growth to algebraic growth in time.
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Single channel mode

Despite unbounded algebraic growth and decay in the single channel mode
(Oxvo)v — OxVg as t — 0o. Thus (Oxvp) v reaches a stable saturated
state, as does the transport of angular momentum.
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Multiple channel modes

0L oL 0 L 0L 0 L

Evolution of (a) 4o/ (¢/2)\/? and (b) ¢o/(¢3)1/> at t = 0,10, 350, 1000.
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Multiple channel modes
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Evolution of an x-dependent initial multiple mode state. The equilibrium
values of (OxVp)y with Npax (dotted) and the smallest vertical
wavenumber permitted N g (dashed) are also shown.

Edgar Knobloch (UC Berkeley)

November 2013

17 / 22



Subdominant Dissipation
When explicit (ohmic) dissipation €,V? is retained (with ¢, = 0.01) the
algebraic growth of the fluctuations also saturates
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Theory

When the nonlinear terms OxVg, Oxbg are ignored the solution of the
reduced equations is

g

= =2
(Wo (1), Vo (1), P (1), Bo (1)) = (1, —pmax. —ﬁmax,z”rzax) rmaxt
g

This solution is in fact an exact solution of the nonlinear fluctuating
equations as obtained by Goodman and Xu (1994). But when 9x Vo,
Ox by = 0 are included the exponential growth becomes algebraic:

Yo = (Wit Y2 + W, coswt) cos(fiz)
vi = (Vit¥2 4 Vasinwt)sin(hz)
do = (®1tY2 4 dysinwt)sin(fz)
by = (Bit Y2+ Bycoswt)cos(nz),
ided OxVo = —7 — AT and w = /402 + 7212
provided dxVp = —0 — —5- and w = 400 + ncvy.
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Theory

From the closure relation one obtains

~2, .2 ~2
D (dxvo)y = %w% - ;—gsiant\U% (32)

It is remarkable that this expression does not contain secular terms
proportional to t1/2 coswt, t~1/2sinwt or indeed t, and hence saturates
despite the algebraic growth of the contributing fields (cf. Landau
damping). The mean component arises from products of the terms

P, t%, Vlt% and \Illt*%, B; tf%, while the oscillatory component is a
consequence of the terms (Vy, Vo, 2, By). On time-averaging (32) we
obtain finally the prediction

200 Dv2 205
2 A ~2
\Ul = ,\n72 28)(V0 = ,\n72 5 (— VE\ —n ) . (33)
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Theory

We can measure the frequency w from the numerical simulations for a
range of values of €, with the remaining parameters fixed.
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(a) Back-reaction saturates the growth of (dxvo)y, (b) w(Q)
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Summary

@ Simple scaling suffices to characterize a one-parameter family of
self-consistent equilibrated states

» Strong modification of the background shear that feeds the MRI
» Equilibration ultimately determined by ohmic + viscous dissipation
» This regime is not accessible to fully resolved simulations

Details in:

» E. Knobloch and K. Julien, Phys. Fluids 17, 094106 (2005);

» K. Julien and E. Knobloch, in Stellar Fluid Dynamics and Numerical
Simulations: From the Sun to Neutron Stars, M. Rieutord and B.
Dubrulle (eds), EAS Publication Series 21 (2006);

» K. Julien and E. Knobloch, J. Math. Phys. 48, 065405 (2007);

» B. Jamroz, K. Julien and E. Knobloch, Phys. Scr. T132, 014027
(2008);

» B. Jamroz, K. Julien and E. Knobloch, AN 329, 675 (2008).
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