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Motivation

Magnetic field-induced instabilities can transport angular momentum
in astrophysical accretion disks outwards, thereby permitting accretion

Magnetorotational instability has several appealing properties (Balbus
and Hawley 1991, 1998)

I It is a linear instability
I It is triggered by weak poloidal magnetic field
I It is axisymmetric
I It occurs in Rayleigh-stable regime when the angular velocity decreases

radially
I It grows on a dynamical timescale
I It is fundamentally a local instability

Efficiency of angular momentum transport depends on the saturation
of the MRI

Central question: how does the MRI saturate?
This is a nonlinear problem!

Is the saturated state perhaps a dynamo? Lesur and Ogilvie (2008)

Edgar Knobloch (UC Berkeley) MRI November 2013 2 / 22



Ideal MRI

The basic equations are

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p − 1

2µ0
∇B2 +

1

µ0
(B · ∇)B,

∂B

∂t
+ (u · ∇)B = (B · ∇)u,

∇ · u = ∇ · B = 0.

These equations have a basic axisymmetric solution of the form

u0 = [0,V (r), 0], B0 = [0,Bφ(r),Bz(r)]

in (r , φ, z) coordinates.
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Numerical simulations: shearing box geometry

Balbus-Hawley 1991a,b: Thin sheets of matter moving radially
inwards and outwards
X-points suggest reconnection process important to saturation
Goodman & Xu 1994, Pessah & Goodman 2009: shear instabilities of
the interpenetrating sheets
Sano et al 1998: whether saturation occurs depends on the Elsasser
number Λ ≡ v2

A/ηΩ
Edgar Knobloch (UC Berkeley) MRI November 2013 4 / 22



Formulation of a Model Problem: Knobloch & Julien 2005

Shearing box approximation at r∗ with local angular velocity Ω∗(r∗)ẑ:

Straight channel: −L∗/2 ≤ x∗ ≤ L∗/2, −∞ < y∗ <∞,
−∞ < z∗ <∞
Linear shear: U0

∗ = (0, σ∗x∗, 0)

Constant B-Field: B0
∗ = (0,B∗tor ,B

∗
pol)

Perturb: u ≡ (u, v ,w) = (−ψz , v , ψx), b ≡ (a, b, c) = (−φz , b, φx)

Axisymmetric Equations

∇2ψt + 2Ωvz + J(ψ,∇2ψ) = v2
A∇2φz + v2

AJ(φ,∇2φ) + ν∇4ψ, (1)

vt − (2Ω + σ)ψz + J(ψ, v) = v2
Abz + v2

AJ(φ, b) + ν∇2v , (2)

φt + J(ψ, φ) = ψz + η∇2φ, (3)

bt + J(ψ, b) = vz − σφz + J(φ, v) + η∇2b, (4)

where J(f , g) ≡ fxgz − fzgx .

vA ≡ B∗pol/
√
µ0ρ∗U

∗, Ω, ν, η are the dimensionless Alfvén speed,
rotation rate, kinematic viscosity and ohmic diffusivity
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Linear Theory

Linearization about the trivial state ψ = v = φ = b = 0:

Perturbation exp[λt + ikx + inz ], p = k2 + n2 ⇒ dispersion relation

p[(λ+νp)(λ+ηp)+v2
An

2]2+2Ωn2[(λ+ηp)2(2Ω+σ)+σv2
An

2] = 0. (5)

Conventional view of MRI: positive growth rate λ achieved for
sufficiently large vertical wavenumbers n whenever σ < 0, vA 6= 0,
provided only that ν and η are sufficiently small

I For ν = η = 0

λ2 = − v2
An

2σ

2Ω + σ
+ O(v4

An
4). (6)

I For λ = 0 threshold for instability exists. For small ν, η critical Elsasser
number

Λc ≡ v2
A/Ωη = −η

(
2Ω + σ

Ωσ

)
p2

n2
+ O(ν, η)3. (7)

I Reconnection effects described by finite η are more important for
stabilizing the system against the MRI than viscosity.
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Scaling Assumptions

Traditional approach to nonlinear saturation: weakly nonlinear theory
with (Λ− Λc)/Λc � 1 (eg. Umurhan & Regev 2007)

Our approach: strongly nonlinear theory
I shear is the dominant source of energy for the MRI
I MRI itself requires the presence of a (weaker) vertical magnetic field
I dissipative effects are weaker still but cannot be ignored since they are

ultimately responsible for the saturation of the instability

Hence scaling:
I rapid rotation, strong shear: (Ω, σ) = ε−1(Ω̂, σ̂)
I magnetic field: vA = 1 i.e. , U∗ = v∗A ≡ B∗pol/

√
µ0ρ∗

I weak dissipative processes: (ν, η) = ε(ν̂, η̂)
I thin fingers, strong growth: ∂x → ∂x , ∂z → ε−1∂z , ∂t → ε−1∂t

In the following we take ε� 1, or equivalently
Rm� S � max(1,Pm), while Λ = O(1). Here
Rm = |σ∗|L∗2/η∗ = O(ε−2), Pm = ν∗/η∗ = O(1),
S ≡ v∗AL

∗/η∗ = O(ε−1) are the magnetic Reynolds, magnetic Prandtl
and Lundquist numbers.
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Scaled Equations
In parallel with the above assumptions we need to make further
assumptions about the relative magnitude of the various fields:
we find (ψ, φ)→ ε(ψ, φ), (v , b)→ ε−1(v , b) leads to a self-consistent
set of reduced pdes
scaled pdes:

ε
D

Dt

(
∂2
x + ε−2∂2

z

)
ψ + 2ε−3Ω̂vz = v2

A

(
∂2
x + ε−2∂2

z

)
φz + (8)

εv2
AJ
(
φ,
(
∂2
x + ε−2∂2

z

)
φ
)

+ ε2ν̂
(
∂2
x + ε−2∂2

z

)2
ψ

ε−1 D

Dt
v − ε−1(2Ω̂ + σ̂)ψz = ε−2v2

Abz + ε−1v2
AJ(φ, b) + ν̂(∂2

x + ε−2∂2
z )v

(9)

ε
D

Dt
φ = ψz + ε2η̂(∂2

x + ε−2∂2
z )φ (10)

ε−1 D

Dt
b = ε−2vz − ε−1σ̂φz + ε−1J(φ, v) + η̂(∂2

x + ε−2∂2
z )b, (11)

where D/Dt = ∂t + J[ψ, •].
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Derivation of Reduced PDEs
To solve the scaled equations we suppose
ψ(x , z , t) = ψ0(x , z , t) + εψ1(x , z , t) + . . . , etc.

v0 = V (x), b0 = B(x). (12)

From Eqs for azimuthal fields v , b at O(ε−1) and poloidal fields ψ, φ at
O(ε−2), O(1)

ψ0zzt + 2Ω̂v1z = v2
Aφ0zzz + ν̂ψ0zzzz (13)

v1t − (2Ω̂ + σ̂ + V ′(x))ψ0z = v2
Ab1z − v2

AB
′(x)φ0z + ν̂v1zz (14)

φ0t = ψ0z + η̂φ0zz (15)

b1t − B ′(x)ψ0z = v1z − (σ̂ + V ′(x))φ0z + η̂b1zz (16)

Closure requires determination of V ′(x),B ′(x).
I Averaging Eqs for azimuthal fields v , b at O(1) in z , t and integrating

gives

ν̂V ′(x) = ψ0v1z − v2
Aφ0b1z + C1 (17)

η̂B ′(x) = ψ0b1z − φ0v1z + C2 (18)

C1 is determined by BC’s; 0 < C2 < Cmax range of total to zero support of
disk by radial pressure gradient.
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Nonlinear Dispersion Relation

For each wavenumber n the dispersion relation determines V ′

2Ω̂[(v2
A + η̂2n2)V ′ + (2Ω̂ + σ̂)η̂2n2 + σ̂v2

A] + n2(v2
A + ν̂η̂n2)2 = 0

Parameters: Ω̂ = 1, vA = 1, ν̂ = η̂ = 1, and σ̂ = −1.5,−1,−0.5 (solid, dashed, dashed-dot).

The decrease in n with increasing V ′ indicates coarsening as the MRI saturates.
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Single-Mode Solutions: Closure
Closure requires the determination of V ′,B ′ as a function of Ψ. Since

ψ0 =
1

2
(Ψ(x) e inz + c.c.), v1 =

1

2
(V(x) e inz + c.c.), (19)

φ0 =
1

2
(F(x) e inz + c.c.), b1 =

1

2
(B(x) e inz + c.c.),

we find
V ′(x) =

C1 − 1
2β|Ψ|

2

ν̂ + 1
2α|Ψ|2

, B ′(x) =
η̂C2

η̂2 + 1
2 |Ψ|2

. (20)

α =
ν̂v2

A + η̂3n2

η̂2(v2
A + ν̂η̂n2)

, β =
(2Ω̂ + σ̂)η̂3n2 + v2

A(σ̂ν̂ − 2Ω̂η̂)

η̂2(v2
A + ν̂η̂n2)

. (21)

MRI requires C1 = 0 for nonzero V ′ and Ψ

Nonlinear dispersion relation then gives the saturated value of |Ψ|:

|Ψ|2 = −
2ν̂η̂2

[
n2(v2

A + ν̂η̂n2)2 + 2Ω̂σ̂v2
A + 2Ω̂(2Ω̂ + σ̂)η̂2n2

]
[
4Ω̂2v2

Aη̂ + n2
(
v2
A + ν̂η̂n2

) (
ν̂v2

A + η̂3n2
)] (22)

This bifurcation equation determines the saturation amplitude
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Approach to Saturated State

Time-dependent evolution of an x-invariant single-mode perturbation
indicates approach to predicted stationary solution

Above results display extreme cases: disks supported entirely by
mechanical (B ′ = 0) or magnetic (B ′ 6= 0) pressure

νt = 2πε|Ψ| ∼ O(ε): turbulent viscosity associated with developed
MRI
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Small radial scales
If we suppose that

(ν, η) = ε(ν̂, η̂), (Ω, σ) = δ−1(Ω̂, σ̂), (n, λ) = δ−1(n̂, λ̂), (23)

where ε� 1, δ � 1 with ε = o(δ) we obtain

∇̃2ψ′0t + 2Ω̂v ′1z = v2
A∇̃2φ′0z (24)

v1t − (2Ω̂ + σ̂ + V ′(x))ψ0z = v2
Ab1z − v2

AB
′(x)φ0z (25)

φ0t = ψ0z (26)

b1t − B ′(x)ψ0z = v1z − (σ̂ + V ′(x))φ0z (27)

ν̂V ′(x) = ψ0v1z − v2
Aφ0b1z (28)

η̂B ′(x) = ψ0b1z − φ0v1z (29)

In these equations ∇̃ ≡ (∂x̃ , 0, ∂z), where x̃ ≡ x/δ is a fast scale. Hence
full spatial dependence is retained but dissipation is subdominant.
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Single channel mode
With ∂X v0 = ∂Xb0 ≡ 0 the reduced equations admit exponentially
growing solutions of the form (Goodman and Xu, 1994)

ψ0 = Ψ0 (t) cos n̂z , v1 = V0 (t) sin n̂z , (30)

φ0 = Φ0 (t) sin n̂z , b1 = B0 (t) cos n̂z ,

However, within the theory an initial state with n̂ = n̂max and
∂X v0 = ∂Xb0 = 0 develops nonzero ∂X v0, ∂Xb0, resulting in a transition
from exponential growth to algebraic growth in time.
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Single channel mode
Despite unbounded algebraic growth and decay in the single channel mode
〈∂X v0〉V → ∂X v0 as t →∞. Thus 〈∂X v0〉V reaches a stable saturated
state, as does the transport of angular momentum.
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Multiple channel modes
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Multiple channel modes
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Evolution of an x-dependent initial multiple mode state. The equilibrium
values of 〈∂X v0〉V with n̂max (dotted) and the smallest vertical

wavenumber permitted n̂eff (dashed) are also shown.
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Subdominant Dissipation
When explicit (ohmic) dissipation εη∇̃2 is retained (with εη = 0.01) the
algebraic growth of the fluctuations also saturates
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Theory

When the nonlinear terms ∂X v0, ∂Xb0 are ignored the solution of the
reduced equations is

(Ψ0 (t) ,V0 (t) ,Φ0 (t) ,B0 (t)) ≡
(

1,−2
n̂max

σ̂
,−n̂max, 2

n̂2
max

σ̂

)
eλmaxt .

This solution is in fact an exact solution of the nonlinear fluctuating
equations as obtained by Goodman and Xu (1994). But when ∂X v0,
∂Xb0 = 0 are included the exponential growth becomes algebraic:

ψ0 = (Ψ1t
−1/2 + Ψ2 cosωt) cos(n̂z)

v1 = (V1t
1/2 + V2 sinωt) sin(n̂z)

φ0 = (Φ1t
1/2 + Φ2 sinωt) sin(n̂z)

b1 = (B1t
−1/2 + B2 cosωt) cos(n̂z), (31)

provided ∂X v0 = −σ̂ − v2
An̂

2

2Ω̂
and ω =

√
4Ω̂2 + n̂2v2

A.
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Theory

From the closure relation one obtains

ν̂ 〈∂X v0〉V =
n̂2ω2

2Ω̂
Ψ2

1 −
n̂2ω

8Ω̂
sin 2ωtΨ2

2. (32)

It is remarkable that this expression does not contain secular terms
proportional to t1/2 cosωt, t−1/2 sinωt or indeed t, and hence saturates
despite the algebraic growth of the contributing fields (cf. Landau
damping). The mean component arises from products of the terms

Φ1t
1
2 ,V1t

1
2 and Ψ1t

− 1
2 ,B1t

− 1
2 , while the oscillatory component is a

consequence of the terms (Ψ2,V2,Φ2,B2). On time-averaging (32) we
obtain finally the prediction

Ψ2
1 =

2ν̂Ω̂

n̂2ω2
∂X v0 =

ν̂v2
A

n̂2ω2

(
−2Ω̂σ̂

v2
A

− n̂2

)
. (33)
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Theory
We can measure the frequency ω from the numerical simulations for a
range of values of Ω̂, with the remaining parameters fixed.
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(a) Back-reaction saturates the growth of 〈∂X v0〉V , (b) ω(Ω̂)
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Summary

Simple scaling suffices to characterize a one-parameter family of
self-consistent equilibrated states

I Strong modification of the background shear that feeds the MRI
I Equilibration ultimately determined by ohmic + viscous dissipation
I This regime is not accessible to fully resolved simulations

Details in:

I E. Knobloch and K. Julien, Phys. Fluids 17, 094106 (2005);
I K. Julien and E. Knobloch, in Stellar Fluid Dynamics and Numerical

Simulations: From the Sun to Neutron Stars, M. Rieutord and B.
Dubrulle (eds), EAS Publication Series 21 (2006);

I K. Julien and E. Knobloch, J. Math. Phys. 48, 065405 (2007);
I B. Jamroz, K. Julien and E. Knobloch, Phys. Scr. T132, 014027

(2008);
I B. Jamroz, K. Julien and E. Knobloch, AN 329, 675 (2008).
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