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Duality between fluctuations and mean velocities
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Mean flow overlap argument

-~

Inner: Ut = f(y+)

Outer: Voo — U =4 (X)

1
— Ut = Eln(y+) + B

(log-law in the overlap region)
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Two problems with the classical scaling

e Only strictly valid at infinite Reynolds numbers.



Two problems with the classical scaling

e Only strictly valid at infinite Reynolds numbers.

mosnik et al. (2000) extended it to finite Reynolds numbers by allowing the \
functions to vary with Reynolds number.

Ut =f,(y*,R") by introducing an intermediate variable j = y*R* ™"
U. —U and by differentiating with respect to Rt while
Y fo@,R™) keeping ¥ constant (following George & Castillo 1997),
‘ they found that:
ofl _ 1 [ORONRD] RGO _ 1
Y07 | KRD) T | DlogRT) |, 0logRD || kRD) T

e If there exists a region in space where S,,, = 0, the mean velocities will exhibit a
the logarithmic law. Also note that S,,, = constant would result in a logarithm.

1 duj

k  dlogR*
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Two problems with the classical scaling

* Only valid at infinite Reynolds numbers.

mosnik et al. (2000) dealt with finite Reynolds numbers by allowing the functih
vary with Reynolds number.

Ut =f,(y*,R") by introducing an intermediate variable j = y*R* ™"
U.—U and by differentiating with respect to Rt while
oou = fo(J,R™) keeping y constant, they found that.
on| __ 1 [oRORY| _aRGRDI_ 1
07 | R | 9log(RT) | . dlogRO[,| T k®D O™

e IfS,,, = 0then we recover the logarithmic law.
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Two problems with the classical scaling

 Does only work for the mean velocity, cannot explain
the duality observed between the mean velocity and

the fluctuations.

KThe as good as perfect match between "
the logarithmic layer in the fluctuations N
and the mean suggests that there might

be a matching theory.

Ktrend in the fluctuations.

* Problem: No obvious offset in the
variances (centerline velocity for the
mean velocities, (U, — U) /u)

e There will always be a Reynolds number

B




Reynolds number dependence in the fluctuations
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Can extend the approach by Wosnik et al. (2000)

u*t = g;(y*,R")

2+ _

u _go()_]'R+)

introducing an intermediate variable # = y*R* ™" and
by differentiating with respect to R* while keeping y
constant, we find.

_090(J,R™)
dlog(R")

agi (y+; R+)
dlog(RY)

_09,
ya)_,

= —S;

R+

y* y

If S is constant anywhere in space we can expect the
profile to be logarithmic in the same region. And the
slope of the logarithm will be —5¢.

u®* = By — S¢log(y + b*)

Hultmark (JEM) 2012



Sensitivity functions for the mean and the

Evaluate the sensitivity functions by

interpolating the data at Re;

98,000 and Re; = 37,000 to match

y* and y of Re, = 68,000 and

evaluate the gradients in Reynolds

number.

o - _|29:0%RD| - 99,G.RY)
r= 0 log(R+) . 0log(R")
o _|2rGHRO LG RY|
m dlog(R+) . dlog(R+) ;
Can expect:

u?* = B; — 1.27log(y + b)
and

1
Ut = Elog(y+ +a*)+B

fluctuations
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Duality between fluctuations and mean velocities
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New sensors made it possible
(together with a very special facility)

Nano-Scale Thermal Anemometer Probe (NSTAP)
Bailey et al. (2010), Vallikivi et al. (2011) , Vallikivi and Smits (under review)
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Zagarola and Smits (1997)
e The NSTAP is more than one order of
magnitude smaller than regular hot wires
(improved spatial resolution)

76 x [10.0 mm|[15.00 kV ETD| SE

* Improved temporal resolution ~150kHz

e Well resolved turbulence measurements
up to Re, = 100, 000.




Similar scaling for passive scalars?
What is needed for a detailed investigation?



Scaling of passive scalar in wall bounded turbulence

— U ——= aV?’0o U, ®:mean components
a X j u,", 6" fluctuations
Q=0+ 0 a :scalar diffusivity
. /
u,=U. +u
70) A 0”2® ,w <—— Scalar flux

Scalar flux: contribution of turbulence in the transport of the scalar

Mean quantities alone are not enough to understand scalar transport in turbulent
flows

Knowledge about the scalar flux is needed



Two new facilities for temperature investigations

Channel flow

. Height h=26=6.35cm

. Aspect ratio 12

. Unheated section: 5 meters ~80h
. Heated section: 4.75 meters ~75h




Two new facilities for temperature investigations

Water channel

0.25 x 0.15 x 1 m test section
Up to 13 m/s
30 kW of cooling power installed

42 KW of heating built into the wall of the test section for a developing thermal
and velocity boundary layer

De-ionizer

From chiller
—
A

—
To chiller
Filter

Deionizer

Disk pump driven by a
110 kW motor

Heat plate with a designed
maximum heating power of 42 kW



Evaluating of cold-wires

0 : :
A Step amplitude
® Tmpulse-high FFT
B Impulse-low FFT
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Design of true fast response temperature sensor

Wire filament Gold prongs
* Long and thin wire filament

| =300um |, =1mm
e High conductivity prongs d =2007m d, =1mm
e Thicker and shorter prongs °
-5
-10
* Two metal construction _
m -15
platinum wire and gold stubs E’
3 -20
e 200x0.1x1um g
= 25t
?:w . =301
-35
-40 — 0 1 2 a 4 5
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Frequency (Hz)

HV WD | Mag |Det Date | sis_xl.tif
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Fabrication process

i

Bare silicon wafer

Deposit insulating
SiO, layer

Spin on photoresist

Expose to UV lamp
with designed pattern

First layer metal
deposition (Pt)

Metal lift-off

Spin on photoresist
for 20 |ayer

Expose to UV lamp
with 2°d |ayer design

[ silicon

- Photoresist

[ ] silicon dioxide [ Platinum

—

S
_—_—
e

[ ]cod

Second layer metal
deposition (Au)

Metal lift-off

Spin on photoresist
on the backside

Photolithography
on the backside

Deep reactive ion
etching

Isotropic Si etching

Wet etch to release
free-standing wire
(etch SiO,)



Measurement techniques — avoiding attenuation and
resolving dissipative scales

T-NSTAP

1E-05 1 um wire

1E-07
1E-01 1E+01 1E+03 1E+05
f [Hz]

Temperature fluctuations measured with
e T-NSTAP (100 nm thickness)
e 1 um wire (I/d=200)
T-NSTAP has improved temporal and
spatial resolution
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Conclusions

A new theory for the streamwise turbulent fluctuations in fully
developed pipe flow was introduced.

The slope of the logarithm of the variances relate to the
derivative in Reynolds number.

To investigate similar behavior for scalar fields two new facilities
have been commissioned.

A new fast response cold-wire is developed and tested
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