Asymptotic Approaches for High Reynolds Number Shear Flows

Greg Chini^{†‡}

Ziemowit Malecha[†] Cedric Beaume[§] Edgar Knobloch[§] Keith Julien*

[†]Program in Integrated Applied Mathematics, University of New Hampshire

[‡]Department of Mechanical Engineering, University of New Hampshire

§Department of Physics, University of California, Berkeley

*Department of Applied Mathematics, University of Colorado, Boulder

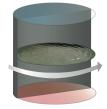
UNH Workshop on High-Re Wall Flows November 21st. 2013

From Constrained Convection to Wall-Bounded Shear Flows

II: Anisotropic Driving

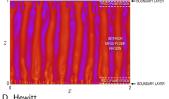
+ Linear Instability

- + Linear Instability
- + External Constraint



E. King

Rapidly rotating convection

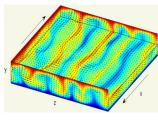


Porous medium convection

S. Monismith

Langmuir circulation

III: Anisotropic Driving



I Gibson

Plane Couette flow

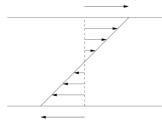
Asymptotic Reduction for High-Re Wall Flows?

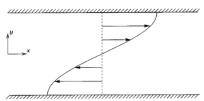
Relation to Workshop Themes & Focus Questions:

- Illustration of model reduction enabled by flow structure/anisotropy in extreme parameter regimes yet in (apparent) absence of externally imposed constraints
- **2** Reduced model confirms that **exact coherent states (ECS)** are **not** limited to transitional flows, but persist as $Re \to \infty$, and reveals structure in that limit
- Oynamics are quasi-linear about streamwise-averaged streamwise flow that is self-consistently determined by nonlinear processes
- Reduced formulation may provide theoretical framework for understanding ECS in spatially-extended domains at large Re?

Testbed for Asymptotically-Reduced Modeling of Wall-Bounded Shear Flows

Plane Couette Flow (PCF)





Waleffe Flow

Wall BCs:
$$u = ^+_- 1$$
, $v = w = 0$
Forcing: $f(y) = 0$

Wall BCs:
$$\partial_y u = 0$$
, $v = w = 0$
Forcing: $\mathbf{f}(y) = \frac{\sqrt{2}\pi^2}{4Re} \sin\left(\frac{\pi y}{2}\right) \hat{\mathbf{e}}_x$

Incompressible Navier-Stokes (NS) Equations

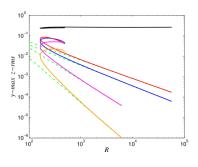
$$\frac{\mathsf{D}\mathbf{v}}{\mathsf{D}t} = -\nabla p + \frac{1}{Re}\nabla^2\mathbf{v} + \mathbf{f}$$

$$\nabla \cdot \mathbf{v} = 0 \qquad Re = UH/\nu$$

Basis for Asymptotically Reduced PDE Model of Lower-Branch ECS in PCF

Inspiration: Notion that **streamwise rolls** *weak* compared to **streamwise streaks** (roughly complementary scenario relative to "pure" Langmuir turbulence)

Justification: Wang, Gibson & Waleffe, PRL (2007)



Fourier decomposition for steady-state ECS:

$$\mathbf{u}(x,t) = \sum_{n=-\infty}^{n=+\infty} \hat{\mathbf{u}}_n(y,z) e^{in\alpha x}$$

Scalings:

- $\hat{u}_0 = O(1)$
- $\bullet \ (\hat{\mathbf{v}}_0, \hat{\mathbf{w}}_0) = O(Re^{-1})$
- $\hat{\mathbf{u}}_1 = O(Re^{-0.9})$
- $\bullet \ \hat{\mathbf{u}}_n = o(Re^{-1}) \text{ for } n > 1$

Large-Re Multiple Scale Asymptotic Analysis

- Identify $\epsilon \equiv 1/Re$, where $\epsilon \ll 1$
- Introduce slow streamwise length scale $X \equiv \epsilon x$ and slow time scale $T = \epsilon t$ s.t. $\partial_x \to \partial_x + \epsilon \partial_x$ and $\partial_t \to \partial_t + \epsilon \partial_T$
- Decompose $(\mathbf{v}, p) = (\bar{\mathbf{v}}, \bar{p})(X, y, z, T) + (\mathbf{v}', p')(x, X, y, z, t, T)$, where $\overline{(\cdot)} = \text{fast-}(x, t)$ average and $(\cdot)' = \text{fluctuation about mean}$
- Define $\mathbf{v} = u\hat{\mathbf{e}}_{\mathbf{x}} + \mathbf{v}_{\perp}$ and expand

• Substitute into NS equations and fast-average to eliminate secular growth terms

Large-Re Reduced PDE Model [cf. SSP of Waleffe (1995,1997); VWI of Hall (1991,2010)]

Mean Equations

$$\partial_{\mathcal{T}} \bar{u}_{0} + \bar{u}_{0} \partial_{\mathbf{X}} \bar{u}_{0} + (\bar{\mathbf{v}}_{1\perp} \cdot \nabla_{\perp}) \bar{u}_{0} = \nabla_{\perp}^{2} \bar{u}_{0} + f(y)$$

$$\partial_{\mathcal{T}} \bar{\mathbf{v}}_{1\perp} + \partial_{\mathbf{X}} [\bar{u}_{0} \bar{\mathbf{v}}_{1\perp}] + \nabla_{\perp} \cdot \left[\bar{\mathbf{v}}_{1\perp} \bar{\mathbf{v}}_{1\perp} + \overline{\mathbf{v}'_{1\perp} \mathbf{v}'_{1\perp}} \right] = -\nabla_{\perp} \bar{p}_{2} + \nabla_{\perp}^{2} \bar{\mathbf{v}}_{1\perp}$$

$$\partial_{\mathbf{X}} \bar{u}_{0} + \nabla_{\perp} \cdot \bar{\mathbf{v}}_{1\perp} = 0$$

Large-Re Reduced PDE Model [cf. SSP of Waleffe (1995,1997); VWI of Hall (1991,2010)]

Mean Equations

$$\partial_{T}\bar{\mathbf{u}}_{0} + \bar{\mathbf{u}}_{0}\partial_{\mathbf{X}}\bar{\mathbf{u}}_{0} + (\bar{\mathbf{v}}_{1\perp} \cdot \nabla_{\perp})\bar{\mathbf{u}}_{0} = \nabla_{\perp}^{2}\bar{\mathbf{u}}_{0} + f(y)$$

$$\partial_{T}\bar{\mathbf{v}}_{1\perp} + \frac{\partial_{\mathbf{X}}\left[\bar{\mathbf{u}}_{0}\bar{\mathbf{v}}_{1\perp}\right] + \nabla_{\perp}\cdot\left[\bar{\mathbf{v}}_{1\perp}\bar{\mathbf{v}}_{1\perp} + \frac{\mathbf{v}'_{1\perp}\mathbf{v}'_{1\perp}}{\mathbf{v}'_{1\perp}}\right] = -\nabla_{\perp}\bar{p}_{2} + \nabla_{\perp}^{2}\bar{\mathbf{v}}_{1\perp}$$

$$\frac{\partial_{\mathbf{X}}\bar{\mathbf{u}}_{0} + \nabla_{\perp}\cdot\bar{\mathbf{v}}_{1\perp}}{\partial_{\perp}} = 0$$

Fluctuation Equations

$$\partial_{t}u'_{1} + \overline{\mathbf{u}}_{0}\partial_{x}u'_{1} + (\mathbf{v}'_{1\perp} \cdot \nabla_{\perp})\overline{\mathbf{u}}_{0} = -\partial_{x}p'_{1}$$
$$\partial_{t}\mathbf{v}'_{1\perp} + \overline{\mathbf{u}}_{0}\partial_{x}\mathbf{v}'_{1\perp} = -\nabla_{\perp}p'_{1}$$
$$\partial_{x}u'_{1} + \nabla_{\perp}\cdot\mathbf{v}'_{1\perp} = 0$$

Structure of Large-Re Reduced PDE Model

- In absence of X-modulation, mean system is 2D but 3C and has unit effective Reynolds number
- Departure from base laminar flow driven entirely by $\overline{\mathbf{v}_{1\perp}'\mathbf{v}_{1\perp}'}$ Reynolds stress
- Fluctuation equations are: (i) inviscid; (ii) quasi-linear ⇒ admit single-mode solutions in x, e.g.

$$\mathbf{v}'_{1\perp} = A\hat{\mathbf{V}}_{1\perp}(y,z)e^{i(\alpha x)} + c.c.$$

and (iii) singular for equilibrium ECS on non-planar critical layer $\bar{u}_0(y,z)=0$

$$\nabla_{\perp}^{2}\hat{P}_{1} - \alpha^{2}\hat{P}_{1} - \frac{2}{\bar{u}_{0}}\nabla_{\perp}\bar{u}_{0}\cdot\nabla_{\perp}\hat{P}_{1} = 0$$
 Generalized Rayleigh equation Hall & Horseman, JFM (1991)

Viscous Regularization of CL. I. Composite Equation [Beaume et al. (2012,2013)]

Eigenvalue Formulation of Regularized Fluctuation Equations

$$\nabla_{\perp}^{2} \hat{P}_{1} - \alpha^{2} \hat{P}_{1} = -2i\alpha \left[\hat{V}_{1} \partial_{y} \bar{\mathbf{u}}_{0} + \hat{W}_{1} \partial_{z} \bar{\mathbf{u}}_{0} \right]$$

$$\sigma \hat{V}_{1} + i\alpha \bar{\mathbf{u}}_{0} \hat{V}_{1} = -\partial_{y} \hat{P}_{1} + \epsilon \nabla_{\perp}^{2} \hat{V}_{1}$$

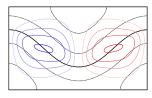
$$\sigma \hat{W}_{1} + i\alpha \bar{\mathbf{u}}_{0} \hat{W}_{1} = -\partial_{z} \hat{P}_{1} + \epsilon \nabla_{\perp}^{2} \hat{W}_{1}$$

Solution Algorithm

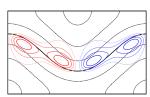
- **1** Generate initial guess for $\bar{u}_0(y, z)$
- Quess amplitude of fluctuations A
- **3** Solve eigenvalue problem (via Arnoldi iteration) for form of fastest-growing (non-oscillatory) modes $\hat{V}_1(y,z)$, $\hat{W}_1(y,z)$
- 4 Use $A(\hat{V}_1, \hat{W}_1)$ to compute Reynolds stress in mean x-vorticity $(\bar{\Omega}_1)$ equation
- **5** Time-advance $\bar{\Omega}_1$ and \bar{u}_0 to steady state
- 6 Return to step 3. and iterate until convergence
- **1** Return to step 2., adjusting A until **equilibrium** solution found ($\sigma \equiv 0$)

Viscous Regularization of CL. I. Results for Waleffe Flow:

Lower-Branch ECS (
$$\epsilon^{-1}=1500$$
, $\alpha=0.5$, $L_y=\pi$)



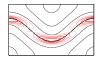
 $\bar{\Omega}_1(y,z)$



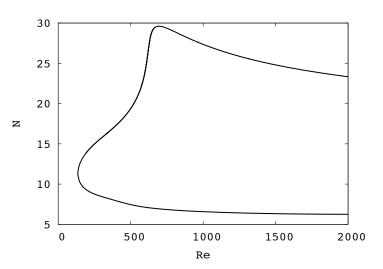
$$\operatorname{\mathsf{Re}}\{\hat{V}_1(y,z)\}$$

 $\operatorname{Re}\{\hat{W}_1(y,z)\}$

$$\hat{V}_1^2(y,z) + \hat{W}_1^2(y,z)$$

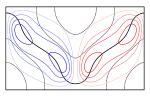


Viscous Regularization of CL. I. Results for Waleffe Flow: Bifurcation Diagram

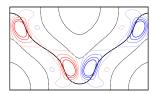


Viscous Regularization of CL. I. Results for Waleffe Flow:

Upper-Branch ECS (
$$\epsilon^{-1}=1500, \ \alpha=0.5, \ L_{\rm v}=\pi$$
)



 $\bar{\Omega}_1(y,z)$



$$\operatorname{\mathsf{Re}}\{\hat{V}_1(y,z)\}$$

 $\operatorname{\mathsf{Re}}\{\hat{W}_1(y,z)\}$

$$\hat{V}_1^2(y,z) + \hat{W}_1^2(y,z)$$

• Convenient to use $[u \equiv \bar{u}_0(y,z),z]$ coordinates so, e.g., $\hat{P}_1(y,z) = \tilde{P}_1(u,z)$

- Convenient to use $[u \equiv \bar{u}_0(y,z),z]$ coordinates so, e.g., $\hat{P}_1(y,z) = \tilde{P}_1(u,z)$
- $\bullet \ \ \tilde{P}_1 \ \ \mathsf{regular} \ \ \mathsf{across} \ \mathsf{CL} \colon \boxed{ \partial_u \tilde{P}_1 = 0 } \quad \Rightarrow \quad \boxed{ (\tilde{U}_1, \tilde{V}_1, \tilde{W}_1) = \mathit{O}(1/\mathit{u}) \ \mathsf{as} \ \mathit{u} \to 0 }$

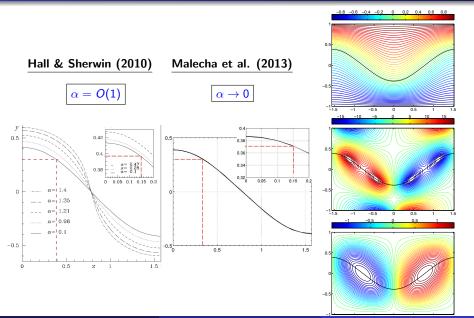
- Convenient to use $[u \equiv \bar{u}_0(y,z),z]$ coordinates so, e.g., $\hat{P}_1(y,z) = \tilde{P}_1(u,z)$
- $\bullet \ \ \tilde{P}_1 \ \ \mathsf{regular} \ \ \mathsf{across} \ \ \mathsf{CL} \\ : \boxed{\partial_u \tilde{P}_1 = 0} \quad \Rightarrow \quad \boxed{ (\tilde{U}_1, \tilde{V}_1, \tilde{W}_1) = \mathit{O}(1/\mathit{u}) \ \ \mathsf{as} \ \ \mathit{u} \to 0 }$
- CL thickness set by fluctuation dynamics: $\epsilon \partial_u^2 \tilde{W}_s i \alpha u \tilde{W}_s \sim \partial_y u \partial_z \tilde{P}_1 / |\nabla_\perp u|$
 - \Rightarrow $u = O(\epsilon^{1/3})$, consistent with Wang *et al.* (2007)
 - \Rightarrow Fluctuation fields $(\tilde{V}_1, \tilde{W}_1)$ can be **analytically** related to $\partial_z \tilde{P}_1$ on u = 0

- Convenient to use $[u \equiv \bar{u}_0(y,z),z]$ coordinates so, e.g., $\hat{P}_1(y,z) = \tilde{P}_1(u,z)$
- $\bullet \ \ \tilde{P}_1 \ \ \mathsf{regular} \ \ \mathsf{across} \ \ \mathsf{CL} \\ : \boxed{\partial_u \tilde{P}_1 = 0} \quad \Rightarrow \quad \boxed{ (\tilde{U}_1, \tilde{V}_1, \tilde{W}_1) = \mathit{O}(1/\mathit{u}) \ \ \mathsf{as} \ \ \mathit{u} \to 0 }$
- CL thickness set by fluctuation dynamics: $\epsilon \partial_u^2 \tilde{W}_s i \alpha u \tilde{W}_s \sim \partial_y u \partial_z \tilde{P}_1 / |\nabla_\perp u|$
 - \Rightarrow $u = O(\epsilon^{1/3})$, consistent with Wang *et al.* (2007)
 - \Rightarrow Fluctuation fields $(\tilde{V}_1, \tilde{W}_1)$ can be **analytically** related to $\partial_z \tilde{P}_1$ on u=0
- Fluctuation magnitude set by balance within CL b/w Reynolds stress forcing by fluctuations and diffusion of mean x-vorticity, viz. in Cartesian (y,z) coordinates:

$$\nabla_{\perp}^2 \bar{\Omega}_1 \quad \sim \quad - \left(\partial_z^2 - \partial_y^2 \right) \overline{v_1' w_1'} \, - \, \partial_z \left[\partial_y \left(\overline{v_1' v_1'} - \overline{w_1' w_1'} \right) \right]$$

 \Rightarrow Find $(v',w') = O(Re^{-5/6})$ w/in CL \Rightarrow Forcing localized w/in CL

Viscous Regularization of CL. II. PCF Results as $\alpha \to 0$, w/ $\alpha Re \to \infty$



Prospectus: Workshop Themes

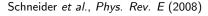
- Rational asymptotic descriptions of ECS in wall flows at large Re possible (including upper-branch ECS?)
- Ongoing Work: ECS-based model reduction at large Re provides foothold for derivation of SSP-theory in spatially-extended domains directly from NS eqns

e.g., X-modulation expected for $L_x \gg 1$ when fluctuation modes with similar x-wavenumbers may excited:

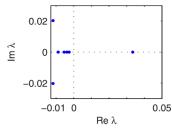
$$\begin{split} \partial_{T} \bar{\mathbf{v}}_{1\perp} + & \frac{\partial_{X}}{\partial z} \left[\bar{\mathbf{v}}_{0} \bar{\mathbf{v}}_{1\perp} \right] + \nabla_{\perp} \cdot \left[\bar{\mathbf{v}}_{1\perp} \bar{\mathbf{v}}_{1\perp} + \overline{\mathbf{v}'_{1\perp} \mathbf{v}'_{1\perp}} \right] &= -\nabla_{\perp} \bar{p}_{2} + \nabla_{\perp}^{2} \bar{\mathbf{v}}_{1\perp} \\ \text{where:} \quad \mathbf{v}'_{1\perp} &= A(X, T) \hat{\mathbf{V}}_{1\perp}(y, z) e^{i(\alpha x)} + c.c. \end{split}$$

- Future Work: Desirable to derive reduced PDE models of turbulent dynamics in extreme parameter regimes (a la Julien & Knobloch for constrained convection)
 - e.g., perhaps feasible to systematically derive model for interaction of superstructures with near-wall region?

Plane Couette Flow (PCF) in a $4\pi \times 2\pi \times 2$ Domain at Re = 400

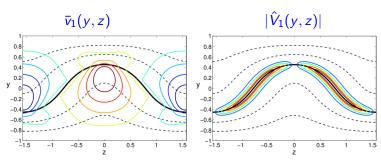






- 3D exact coherent states (ECS) born in saddle-node bifurcations (arise in pairs)
- **Disconnected** from laminar base state, even as $Re \rightarrow \infty$
- Lower-branch ECS in PCF much studied at moderate *Re* and in small domains, where they possess only a small number of unstable eigen-directions
- Upper-branch ECS seem to capture certain statistics of uncontrolled turbulence

Lower-Branch ECS Critical Layer (CL)



Wang, Gibson & Waleffe, PRL (2007), Re = 50171

- Fluctuations concentrate in critical layer of thickness $O(Re^{-1/3})$
- Mean fields experience jump in x-vorticity & gradient near critical layer

Viscous Regularization of CL. II. Small- α Limit

- Derive jump conditions for mean x-vorticity component across CL in terms of fluctuation pressure gradient along CL \Rightarrow still must solve (secondary-stability-like) eigenvalue problem for stability of streak motions $\bar{u}_0(y,z)$
- By further exploiting limit of long-wavelength fluctuations, i.e. $\alpha \to 0$, $\alpha Re \gg 1$, Reynolds stress **closure** can be systematically achieved \Rightarrow **not** necessary to solve eigenvalue problem for fluctuation fields
- ullet These long-wavelength states may be of interest, b/c they are the **minimum drag** states for the lower-branch ("EQ1") ECS investigated here

Vall Shear $\partial_y \bar{u}_0|_{y=1}$

