
Asymptotic Approaches for High Reynolds Number
Shear Flows

Greg Chini†‡

Ziemowit Malecha† Cedric Beaume§ Edgar Knobloch§ Keith Julien∗

†Program in Integrated Applied Mathematics, University of New Hampshire

‡Department of Mechanical Engineering, University of New Hampshire

§Department of Physics, University of California, Berkeley

∗Department of Applied Mathematics, University of Colorado, Boulder

UNH Workshop on High-Re Wall Flows
November 21st, 2013

UNH Integrated Applied Mathematics math.unh.edu/graduate/iam 1 / 18



Introduction

From Constrained Convection to Wall-Bounded Shear Flows

I: Anisotropic Driving
+ Linear Instability
+ External Constraint

E. King

Rapidly rotating
convection

II: Anisotropic Driving
+ Linear Instability

D. Hewitt

Porous medium convection

S. Monismith

Langmuir circulation

III: Anisotropic Driving

J. Gibson

Plane Couette flow
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Introduction

Asymptotic Reduction for High-Re Wall Flows?

Relation to Workshop Themes & Focus Questions:

1 Illustration of model reduction enabled by flow structure/anisotropy in extreme
parameter regimes yet in (apparent) absence of externally imposed constraints

2 Reduced model confirms that exact coherent states (ECS) are not limited to
transitional flows, but persist as Re →∞, and reveals structure in that limit

3 Dynamics are quasi-linear about streamwise-averaged streamwise flow that is
self-consistently determined by nonlinear processes

4 Reduced formulation may provide theoretical framework for understanding ECS
in spatially-extended domains at large Re?
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Exact Coherent States (ECS) in Shear Flows

Testbed for Asymptotically-Reduced Modeling of Wall-Bounded Shear Flows

Plane Couette Flow (PCF)

Wall BCs: u =+
− 1, v = w = 0

Forcing: f(y) = 0

Waleffe Flow

Wall BCs: ∂yu = 0, v = w = 0

Forcing: f(y) =
√

2π2

4Re
sin
(
πy
2

)
êx

Incompressible Navier–Stokes (NS) Equations

Dv

Dt
= −∇p +

1

Re
∇2v + f

∇ · v = 0 Re = UH/ν
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Exact Coherent States (ECS) in Shear Flows

Basis for Asymptotically Reduced PDE Model of Lower-Branch ECS in PCF

Inspiration: Notion that streamwise rolls weak compared to streamwise streaks
(roughly complementary scenario relative to “pure” Langmuir turbulence)

Justification: Wang, Gibson & Waleffe, PRL (2007)

Fourier decomposition for steady-state ECS:

u(x , t) =
n=+∞∑
n=−∞

ûn(y , z)einαx

Scalings:

û0 = O(1)

(v̂0,ŵ0)= O(Re−1)

û1 = O(Re−0.9)

ûn = o(Re−1) for n > 1
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Exact Coherent States (ECS) in Shear Flows

Large-Re Multiple Scale Asymptotic Analysis

Identify ε ≡ 1/Re, where ε� 1

Introduce slow streamwise length scale X ≡ εx and slow time scale T = εt s.t.
∂x → ∂x + ε∂X and ∂t → ∂t + ε∂T

Decompose (v, p) = (v̄, p̄)(X , y , z ,T ) + (v′, p′)(x ,X , y , z , t,T ), where
(·) = fast-(x ,t) average and (·)′ = fluctuation about mean

Define v = uêx + v⊥ and expand

u ∼ ū0 + ε
(
ū1 + u′1

)
+ . . .

v⊥ ∼ ε
(
v̄1⊥ + v′1⊥

)
+ . . .

p ∼ ε
(
p̄1 + p′1

)
+ ε

(
p̄2 + p′2

)
+ . . .

Substitute into NS equations and fast-average to eliminate secular growth terms
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Exact Coherent States (ECS) in Shear Flows

Large-Re Reduced PDE Model [cf. SSP of Waleffe (1995,1997); VWI of Hall (1991,2010)]

Mean Equations

∂T ū0 + ū0∂X ū0 + (v̄1⊥ · ∇⊥) ū0 = ∇2
⊥ū0 + f (y)

∂T v̄1⊥ + ∂X [ū0v̄1⊥] +∇⊥ ·
[
v̄1⊥v̄1⊥ + v′1⊥v′1⊥

]
= −∇⊥p̄2 +∇2

⊥v̄1⊥

∂X ū0 + ∇⊥ · v̄1⊥ = 0

Fluctuation Equations

∂tu
′
1 + ū0∂xu

′
1 +

(
v′1⊥ · ∇⊥

)
ū0 = −∂xp′1

∂tv
′
1⊥ + ū0∂xv′1⊥ = −∇⊥p

′
1

∂xu
′
1 + ∇⊥ · v′1⊥ = 0
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Exact Coherent States (ECS) in Shear Flows

Structure of Large-Re Reduced PDE Model

In absence of X -modulation, mean system is 2D but 3C and has unit effective
Reynolds number

Departure from base laminar flow driven entirely by v′1⊥v′1⊥ Reynolds stress

Fluctuation equations are: (i) inviscid; (ii) quasi-linear ⇒ admit single-mode
solutions in x , e.g.

v′1⊥ = AV̂1⊥(y , z)e i(αx) + c.c.

and (iii) singular for equilibrium ECS on non-planar critical layer ū0(y , z) = 0

∇2
⊥P̂1 − α2P̂1 −

2

ū0
∇⊥ū0 · ∇⊥P̂1 = 0 Generalized Rayleigh equation

Hall & Horseman, JFM (1991)
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Exact Coherent States (ECS) in Shear Flows

Viscous Regularization of CL. I. Composite Equation [Beaume et al. (2012,2013)]

Eigenvalue Formulation of Regularized Fluctuation Equations

∇2
⊥P̂1 − α2P̂1 = −2iα

[
V̂1∂y ū0 + Ŵ1∂z ū0

]
σV̂1 + iαū0V̂1 = −∂y P̂1 + ε∇2

⊥V̂1

σŴ1 + iαū0Ŵ1 = −∂z P̂1 + ε∇2
⊥Ŵ1

Solution Algorithm

1 Generate initial guess for ū0(y , z)

2 Guess amplitude of fluctuations A

3 Solve eigenvalue problem (via Arnoldi iteration) for form of fastest-growing
(non-oscillatory) modes V̂1(y , z), Ŵ1(y , z)

4 Use A(V̂1,Ŵ1) to compute Reynolds stress in mean x-vorticity (Ω̄1) equation

5 Time-advance Ω̄1 and ū0 to steady state

6 Return to step 3. and iterate until convergence

7 Return to step 2., adjusting A until equilibrium solution found (σ ≡ 0)
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Exact Coherent States (ECS) in Shear Flows

Viscous Regularization of CL. I. Results for Waleffe Flow:

Lower-Branch ECS (ε−1 = 1500, α = 0.5, Ly = π)

ψ̄1(y , z)

Ω̄1(y , z)

Re{V̂1(y , z)}

Re{Ŵ1(y , z)}

V̂ 2
1 (y , z) + Ŵ 2

1 (y , z)
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Exact Coherent States (ECS) in Shear Flows

Viscous Regularization of CL. I. Results for Waleffe Flow: Bifurcation Diagram

A surprise. . .
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Exact Coherent States (ECS) in Shear Flows

Viscous Regularization of CL. I. Results for Waleffe Flow:

Upper-Branch ECS (ε−1 = 1500, α = 0.5, Ly = π)

ψ̄1(y , z)

Ω̄1(y , z)

Re{V̂1(y , z)}

Re{Ŵ1(y , z)}

V̂ 2
1 (y , z) + Ŵ 2

1 (y , z)
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Exact Coherent States (ECS) in Shear Flows

Viscous Regularization of CL. II. Matched Asymptotic Analysis of Critical Layer
Hall & Sherwin, JFM (2010); Malecha et al. (2013)

Convenient to use [u ≡ ū0(y , z),z] coordinates so, e.g., P̂1(y , z) = P̃1(u, z)

P̃1 regular across CL: ∂uP̃1 = 0 ⇒ (Ũ1,Ṽ1,W̃1) = O(1/u) as u → 0

CL thickness set by fluctuation dynamics: ε∂2
uW̃s − iαuW̃s ∼ −∂yu∂z P̃1/|∇⊥u|

⇒ u = O(ε1/3) , consistent with Wang et al. (2007)

⇒ Fluctuation fields (Ṽ1,W̃1) can be analytically related to ∂z P̃1 on u = 0

Fluctuation magnitude set by balance within CL b/w Reynolds stress forcing by
fluctuations and diffusion of mean x-vorticity, viz. in Cartesian (y ,z) coordinates:

∇2
⊥Ω̄1 ∼ −

(
∂2
z − ∂2

y

)
v ′1w

′
1 − ∂z

[
∂y
(
v ′1v
′
1 − w ′1w

′
1

)]
⇒ Find (v ′,w ′) = O(Re−5/6) w/in CL ⇒ Forcing localized w/in CL
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CL thickness set by fluctuation dynamics: ε∂2
uW̃s − iαuW̃s ∼ −∂yu∂z P̃1/|∇⊥u|

⇒ u = O(ε1/3) , consistent with Wang et al. (2007)
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Exact Coherent States (ECS) in Shear Flows

Viscous Regularization of CL. II. PCF Results as α→ 0, w/αRe →∞

Hall & Sherwin (2010) Malecha et al. (2013)

α = O(1) α→ 0
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Conclusion

Prospectus: Workshop Themes

Rational asymptotic descriptions of ECS in wall flows at large Re possible
(including upper-branch ECS?)

Ongoing Work: ECS-based model reduction at large Re provides foothold for
derivation of SSP-theory in spatially-extended domains directly from NS eqns

e.g., X -modulation expected for Lx � 1 when fluctuation modes with similar
x-wavenumbers may excited:

∂T v̄1⊥ + ∂X [ū0v̄1⊥] +∇⊥ ·
[
v̄1⊥v̄1⊥ + v′1⊥v′1⊥

]
= −∇⊥p̄2 +∇2

⊥v̄1⊥

where: v′1⊥ = A(X ,T )V̂1⊥(y , z)e i(αx) + c.c.

Future Work: Desirable to derive reduced PDE models of turbulent dynamics
in extreme parameter regimes (a la Julien & Knobloch for constrained convection)

e.g., perhaps feasible to systematically derive model for interaction of
superstructures with near-wall region?

UNH Integrated Applied Mathematics math.unh.edu/graduate/iam 15 / 18



Appendix

Plane Couette Flow (PCF) in a 4π × 2π × 2 Domain at Re = 400

Schneider et al., Phys. Rev. E (2008)

3D exact coherent states (ECS) born in saddle-node bifurcations (arise in pairs)

Disconnected from laminar base state, even as Re →∞
Lower-branch ECS in PCF much studied at moderate Re and in small domains,
where they possess only a small number of unstable eigen-directions

Upper-branch ECS seem to capture certain statistics of uncontrolled turbulence
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Appendix

Lower-Branch ECS Critical Layer (CL)

v̄1(y , z) |V̂1(y , z)|

Wang, Gibson & Waleffe, PRL (2007), Re = 50171

Fluctuations concentrate in critical layer of thickness O(Re−1/3)

Mean fields experience jump in x-vorticity & gradient near critical layer
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Appendix

Viscous Regularization of CL. II. Small-α Limit

Derive jump conditions for mean x-vorticity component across CL in terms of
fluctuation pressure gradient along CL ⇒ still must solve (secondary-stability-like)
eigenvalue problem for stability of streak motions ū0(y , z)

By further exploiting limit of long-wavelength fluctuations, i.e. α→ 0, αRe � 1,
Reynolds stress closure can be systematically achieved ⇒ not necessary to solve
eigenvalue problem for fluctuation fields

These long-wavelength states may be of interest, b/c they are the minimum drag
states for the lower-branch (“EQ1”) ECS investigated here

Wall
Shear ∂y ū0|y=1

Deguchi, Hall & Walton JFM (2013)

αRe

Hall & Sherwin JFM (2010)

α
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