User Tools

Site Tools


unh2010:iam931:hw4

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
unh2010:iam931:hw4 [2010/11/13 20:04]
gibson
unh2010:iam931:hw4 [2010/11/15 06:42] (current)
gibson
Line 46: Line 46:
 ==== exer 26.2 ==== ==== exer 26.2 ====
    
-eps-pseudospectra and ''​||e^(tA)||''​ versus t for 32 x 32 matrix A with -1 on main diagonal, ​alpha on 1st and 2nd superdiagonal,​ for a few values of alpha. Note that alpha = 1 gives the matrix asked for in exer 26.2, and alpha =0 gives a nice real symmetric matrix with eigenvalues -1 and orthogonal eigenvectors.+eps-pseudospectra and ''​||e^(tA)||''​ versus t for 32 x 32 matrix A with -1 on main diagonal, ​mu on 1st and 2nd superdiagonal,​ for a few values of mu. Note that mu = 1 gives the matrix asked for in exer 26.2, and alpha =0 gives a nice real symmetric matrix with eigenvalues -1 and orthogonal eigenvectors. The right-hand plots show the asymptotic behavior ''​e^(alpha t)''​ as well, where alpha = -1 is the spectral abscissa of A (i.e. max Re lambda).
  
-alpha = 1.0+mu = 1.0, ampl = 3e05, l.b. = 5e04
  
 {{:​unh2010:​iam931:​hw4:​ex26_2a10.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b10.png?​400}} ​ {{:​unh2010:​iam931:​hw4:​ex26_2a10.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b10.png?​400}} ​
  
-alpha = 0.7 +mu = 0.7, ampl = 178, l.b. = 41.3
  
 {{:​unh2010:​iam931:​hw4:​ex26_2a7.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b7.png?​400}} ​   ​ {{:​unh2010:​iam931:​hw4:​ex26_2a7.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b7.png?​400}} ​   ​
  
-alpha = 0.6+mu = 0.6, ampl = 10.3, l.b. = 3.3
  
 {{:​unh2010:​iam931:​hw4:​ex26_2a6.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b6.png?​400}}  ​ {{:​unh2010:​iam931:​hw4:​ex26_2a6.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b6.png?​400}}  ​
  
-alpha = 0.5+mu = 0.5, ampl = 1, l.b. = .98
  
 {{:​unh2010:​iam931:​hw4:​ex26_2a5.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b5.png?​400}} ​ {{:​unh2010:​iam931:​hw4:​ex26_2a5.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b5.png?​400}} ​
  
-alpha = 0.4+mu = 0.3, ampl = 1, l.b. = .82
  
 {{:​unh2010:​iam931:​hw4:​ex26_2a3.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b3.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2a3.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b3.png?​400}}
  
  
 +The thing to notice is that transient amplification occurs when the eps-pseudospectra of ''​A'' ​
 +extend into the positive-real part of the complex plane. A more precise relationship is given
 +by the Kreiss matrix theorem
  
 +<​latex>​
 +\sup_{t\geq 0} ||e^{tA}|| \geq \sup_{Re\; z > 0} (Re\; z)||(zI-A)^{-1}||
 +</​latex>​
  
 +In the above bound, read ''​||(zI-A)^{-1}||''​ to be the value eps^{-1} for a given eps-pseudospectra. The bound 
 +''​(Re z) ||(zI-A)^{-1}||''​ will be then be large when some eps-pseudospectrum extends far into the right-hand half 
 +of the complex plane. ​
 +
 +Label the left and right-hand sides of this inequality as ''​ampl''​ (amplification) and ''​l.b.''​ (lower bound). ​
 +The labels in the above plots give these values for the given matrix. ​
 +
 +This was a lot to ask for, given that we didn't even discuss pseudospectra in class, let alone the Kreiss matrix theorem! But comparing the amplification and pseudospectra graphs for matrices A smoothly varying between the given and well-behaved forms, as done above, is within everyone'​s grasp. ​
  
  
unh2010/iam931/hw4.1289707465.txt.gz · Last modified: 2010/11/13 20:04 by gibson