User Tools

Site Tools


unh2010:iam931:hw4

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
unh2010:iam931:hw4 [2010/11/07 18:28]
gibson
unh2010:iam931:hw4 [2010/11/15 06:42] (current)
gibson
Line 1: Line 1:
 ====== homework 4 ====== ====== homework 4 ======
 ex 24.3, 26.2, 27.4, 27.5, due Friday Nov 12. ex 24.3, 26.2, 27.4, 27.5, due Friday Nov 12.
- 
 ===== tips ===== ===== tips =====
  
 **ex 24.3:** Use the matlab ''​expm''​ function to compute the matrix exponential. You don't need to turn in ten plots of ''​||e^(tA)||''​ versus ''​t'',​ for ten different matrices, just a few that illustrate the main cases worth commenting about. ​ **ex 24.3:** Use the matlab ''​expm''​ function to compute the matrix exponential. You don't need to turn in ten plots of ''​||e^(tA)||''​ versus ''​t'',​ for ten different matrices, just a few that illustrate the main cases worth commenting about. ​
  
-**ex 26.2:** The +**ex 26.2:​** ​How to do contour-plot a singularity in matlab, by example. 
 + 
 +<​code>​ 
 + 
 +% create a grid in the complex plane 
 +x = [-1:.02:1];  
 +y = [-1:.02:1];  
 +[X,Y] = meshgrid(x,​y);​ 
 +Z = X + 1i*Y;         
 +          
 +% assign to W the values of 1/|z| at the gridpoints ​     
 +W = zeros(length(x),​length(y));​ 
 +for i=1:​length(x) 
 +    for j=1:​length(y) 
 +       ​W(i,​j) = 1/​abs(Z(i,​j));​ 
 +    end 
 +end 
 + 
 +% Plot W directly and scale the contour levels exponentially 
 +The disadvantage is that the color scaling doesn'​t work well  
 +%[C,h] = contour(x,​y,​ W, 10.^[-1:​.1:​2]);​ 
 +%caxis([10^-1 10^2]) 
 + 
 +% Plot log10(W) and scale the contour levels and color linearly 
 +% ('​contourf'​ fills the space between contour lines with color, 
 +%  '​contour'​ just plots colored contour lines.) 
 + 
 +[C,h] = contourf(x,​y,​ log10(W), -1:​.2:​2); ​     
 +caxis([-1 2]) 
 +colorbar 
 + 
 +title('​log10(1/​|z|)'​) 
 +xlabel('​Re z') 
 +ylabel('​Im z') 
 +axis square 
 +axis equal 
 +axis tight 
 +</​code>​ 
 +{{:​unh2010:​iam931:​hw4:​contoureg.png?​400}} 
 +==== exer 26.2 ==== 
 +  
 +eps-pseudospectra and ''​||e^(tA)||''​ versus t for 32 x 32 matrix A with -1 on main diagonal, mu on 1st and 2nd superdiagonal,​ for a few values of mu. Note that mu = 1 gives the matrix asked for in exer 26.2, and alpha =0 gives a nice real symmetric matrix with eigenvalues -1 and orthogonal eigenvectors. The right-hand plots show the asymptotic behavior ''​e^(alpha t)''​ as well, where alpha = -1 is the spectral abscissa of A (i.e. max Re lambda). 
 + 
 +mu = 1.0, ampl = 3e05, l.b. = 5e04 
 + 
 +{{:​unh2010:​iam931:​hw4:​ex26_2a10.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b10.png?​400}}  
 + 
 +mu = 0.7, ampl = 178, l.b. = 41.3 
 + 
 +{{:​unh2010:​iam931:​hw4:​ex26_2a7.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b7.png?​400}} ​    
 + 
 +mu = 0.6, ampl = 10.3, l.b. = 3.3 
 + 
 +{{:​unh2010:​iam931:​hw4:​ex26_2a6.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b6.png?​400}} ​  
 + 
 +mu = 0.5, ampl = 1, l.b. = .98 
 + 
 +{{:​unh2010:​iam931:​hw4:​ex26_2a5.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b5.png?​400}}  
 + 
 +mu = 0.3, ampl = 1, l.b. = .82 
 + 
 +{{:​unh2010:​iam931:​hw4:​ex26_2a3.png?​400}} {{:​unh2010:​iam931:​hw4:​ex26_2b3.png?​400}} 
 + 
 + 
 +The thing to notice is that transient amplification occurs when the eps-pseudospectra of ''​A''​  
 +extend into the positive-real part of the complex plane. A more precise relationship is given 
 +by the Kreiss matrix theorem 
 + 
 +<​latex>​ 
 +\sup_{t\geq 0} ||e^{tA}|| \geq \sup_{Re\; z > 0} (Re\; z)||(zI-A)^{-1}|| 
 +</​latex>​ 
 + 
 +In the above bound, read ''​||(zI-A)^{-1}||''​ to be the value eps^{-1} for a given eps-pseudospectra. The bound  
 +''​(Re z) ||(zI-A)^{-1}||''​ will be then be large when some eps-pseudospectrum extends far into the right-hand half  
 +of the complex plane.  
 + 
 +Label the left and right-hand sides of this inequality as ''​ampl''​ (amplification) and ''​l.b.''​ (lower bound).  
 +The labels in the above plots give these values for the given matrix.  
 + 
 +This was a lot to ask for, given that we didn't even discuss pseudospectra in class, let alone the Kreiss matrix theorem! But comparing the amplification and pseudospectra graphs for matrices A smoothly varying between the given and well-behaved forms, as done above, is within everyone'​s grasp.  
 + 
 + 
 + 
 + 
unh2010/iam931/hw4.1289183308.txt.gz · Last modified: 2010/11/07 18:28 by gibson